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Simple Summary: Pulmonary neuroendocrine neoplasms (NENs) are a challenging type of lung
cancer due to their varied clinical features and aggressive behavior. This study aimed to find specific
metabolomic profiles in the blood of patients with different subtypes of lung NENs, which could help
in early diagnosis. By analyzing 153 metabolites in the plasma of 120 NEN patients and comparing
them with healthy individuals and patients with other lung cancers, we identified specific metabolic
changes. These findings could lead to new biomarkers for early detection and better management of
lung NENs, ultimately improving patient outcomes.

Abstract: Background/Objectives: Pulmonary neuroendocrine neoplasms (NENs) account for 20%
of malignant lung tumors. Their management is challenging due to their diverse clinical features
and aggressive nature. Currently, metabolomics offers a range of potential cancer biomarkers for
diagnosis, monitoring tumor progression, and assessing therapeutic response. However, a specific
metabolomic profile for early diagnosis of lung NENs has yet to be identified. This study aims
to identify specific metabolomic profiles that can serve as biomarkers for early diagnosis of lung
NENs. Methods: We measured 153 metabolites using liquid chromatography combined with mass
spectrometry (LC-MS) in the plasma of 120 NEN patients and compared them with those of 71 healthy
individuals. Additionally, we compared these profiles with those of 466 patients with non-small-cell
lung cancers (NSCLCs) to ensure clinical relevance. Results: We identified 21 metabolites with
consistently altered plasma concentrations in NENs. Compared to healthy controls, 18 metabolites
were specific to carcinoid tumors, 5 to small-cell lung carcinomas (SCLCs), and 10 to large-cell
neuroendocrine carcinomas (LCNECs). These findings revealed alterations in various metabolic
pathways, such as fatty acid biosynthesis and beta-oxidation, the Warburg effect, and the citric
acid cycle. Conclusions: Our study identified biomarker metabolites in the plasma of patients with
each subtype of lung NENs and demonstrated significant alterations in several metabolic pathways.
These metabolomic profiles could potentially serve as biomarkers for early diagnosis and better
management of lung NENs.

Keywords: neuroendocrine neoplasm (NEN); lung; metabolomic profile; metabolism; carcinoid
tumors; small-cell lung carcinoma (SCLC); large-cell neuroendocrine carcinoma (LCNEC);
blood metabolites
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1. Introduction

Lung cancer is the leading cause of cancer deaths, representing a major public health
issue worldwide [1,2]. Among the new diagnosed lung cancers, 20% originate from the
pulmonary neuroendocrine system [3]. Pulmonary neuroendocrine neoplasms (NENs)
include carcinoid tumors, small-cell carcinomas (SCLCs), and large-cell neuroendocrine
carcinomas (LCNECs) [2]. Carcinoid tumors are the least aggressive of the NENs [4], with
a 10-year survival rate of 58–83% [5]. In contrast, neuroendocrine carcinomas (NECs),
which include SCLCs and LCNECs, are aggressive tumors with a 17% survival rate of
10 years [6]. NECs are generally diagnosed at an advanced stage, which limits the ther-
apeutic options [7,8]. Currently, the diagnosis of NENs relies on histopathology or cy-
tology evaluation and requires access to the tumor. Over the last decade, liquid biopsy
(blood or other body fluids) has gained interest as a surrogate approach to diagnose pul-
monary tumors. The advantages of a liquid biopsy are numerous: easy access to blood,
quick turnaround time, and the possibility of making a diagnosis when a tissue biopsy is
not feasible.

Metabolomics is an expanding field of study that could provide clinicians easier access
to NEN biomarkers in biofluids. Since Warburg’s seminal work in the 1920s on the aero-
bic glycolysis metabolism in cancer [9], many dysregulated metabolisms were described,
such as the increase in glutamine or anabolic fatty acids [10]. It is now accepted that the
metabolism of cancer cells differ from that of normal cells under homeostatic physiolog-
ical conditions, promoting tumorigenesis and the development of drug resistance [10].
Indeed, metabolic dysfunction was included as a hallmark of cancer in 2011 [11]. The
association between increased or decreased concentrations of blood metabolites and cancer
suggests that the deregulated metabolism of cancer cells is reflected by the altered pres-
ence of metabolites in the blood [12]. While metabolomic profiles are available for some
cancers [13,14], there is still a lack of information about metabolic dysregulation in NENs,
particularly for LCNECs.

In the present study, we hypothesize that tumor cells or cells in the surrounding
tumor microenvironment directly or indirectly impact the patients’ plasma metabolite
composition. As such, we evaluated whether the plasma metabolic composition of NEN
patients was distinctive from that of healthy controls. We further identified metabolites
specific to carcinoid tumors, SCLCs, and LCNECs. Finally, we assessed the specificity of
potential NEN biomarkers in comparison to 466 non-small-cell lung cancer (NSCLC) cases.

2. Materials and Methods
2.1. Study Population

This is a case–control study comprising 657 consecutive participants who visited the
Institut de cardiologie et de pneumologie de Québec-Université Laval (IUCPQ-UL) between
2005 and 2021. A consent form was obtained for all participants by the IUCPQ biobank.
The cohort included 120 patients with NENs and 466 with NSCLCs, all of whom had lung
resections, as well as 71 healthy individuals without pulmonary pathology. Plasma was
collected from these individuals on the day of the surgery for the patients with cancer, prior
to the resection. Plasma samples were stored at −70 ◦C. The protocol was approved by the
Research Ethics Committee of the IUCPQ (2022-3781, 22164). Frozen plasma samples of 200
or 400 µL were shipped to the Metabolomic Innovation Centre (TMIC), at the University of
Alberta, Canada, for quantitative metabolomic analysis.

2.2. Metabolomic Profiling

A fully quantitative targeted mass spectrometry (MS) analysis, targeting 166 metabo-
lites, was performed on all samples. Metabolomic assays utilized high-performance liquid
chromatography (HPLC) named Agilent 1100 HPLC (Agilent Technologies, Santa Clara,
CA, USA) in combination with an AB Sciex 4000 QTrap® tandem mass (MS/MS) spectrom-
eter (Applied Biosystems/MDS Analytical Technologies, Foster City, CA, USA) and were
constructed as described previously [15]. Plasma samples were thawed on ice, vortexed,
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and centrifuged at 18,000× g. A 10 µL aliquot of each sample was loaded onto a filter
insert in a 96-well plate and dried under nitrogen. Metabolites were derivatized using
phenylisothiocyanate (PITC) and extracted with methanol containing 5 mM ammonium
acetate. The extracts were obtained by centrifugation of the double plate system, allowing
for the targeted identification and quantification of metabolites. For amino acids, biogenic
amines, carnitines, and lipids, the extracts were diluted appropriately before mass spectro-
metric analysis. Organic acids were analyzed by mixing 50 µL of plasma with an internal
standard mixture and ice-cold methanol, followed by overnight protein precipitation at
−20 ◦C. After centrifugation, derivatization with 3-nitrophenylhydrazine (3-NPH) and
other reagents was performed before injection into the HPLC-MS/MS system. The assay
integrated isotope-labeled internal standards for accurate quantification, covering a wide
range of metabolites, including amino acids, organic acids, biogenic amines, acylcarnitines,
glycerophospholipids, sphingolipids, and sugars.

Metabolites with more than 50% of missing values were excluded from further analysis,
leaving 153 metabolites. Metabolite levels were standardized for analysis using z-scores.
To quantify the amplitude of the observed changes in metabolite levels between the control
and cancer patient groups, we used fold change (FC). The calculation formula used was
FC = Y/X, where X represents the value of the metabolic concentration in the healthy
controls or in the NSCLC control patients, and Y represents the value of the metabolic
concentration in NEN patients.

2.3. Statistical Analyses

All statistical analyses were performed using the RStudio desktop application with
R version 4.2.1 (Posit Software PBC, Boston, MA, USA). The significance threshold for
statistical tests was set at 5%. We tested for differences in age, sex, smoking status, and
BMI between groups of NEN patients, healthy controls, and NSCLC patients. A Student’s
t-test was used to compare ages and BMIs, and a chi-square test was used to compare the
distribution of sex and smoking status. Concentration data were normalized by z-scores.
For the first step of metabolite selection, a bootstrap resampling strategy was carried out
10,000 times to mitigate unknown associations or unwanted batch effects, with a sampling
size equal to the smallest group (n = x). For each bootstrap iteration, a Mann–Whitney
test was performed on the resampled populations to compare metabolite concentrations
between groups of interest. The Mann–Whitney statistic and p-value were recorded, and a
metabolite was deemed impacted if the median p-value passed a Bonferroni correction at a
threshold p-value of 0.0003 (0.05/153). As a second step of metabolite selection, we used a
backward elimination approach using regularization regression models (lasso, ridge, or
elastic net) using the train function in the glmnet package. For internal cross validation
of the model and to control for overfitting, we used a k-fold cross-validation approach
with 5 folds and 10 iterations. Model weights were added to balance the sample sizes
and ensure a 1:1 ratio between groups. A grid search strategy was applied to identify
the best combinations of α and λ hyperparameters, with α values set at 0, 0.5, or 1, and
λ values set at 0.001, 0.01, 0.1, 1, or 10. For each group comparison, the best model was
selected based on the highest accuracy, whether lasso (α = 1), ridge (α = 0), or elastic net
(α = 0.5) regression. Model performance metrics were based on cross-validation (95% CI)
and the full subset of the training group corresponding to the model. The test group was
the entire cohort; given the smallest cohort size of LCNEC patients (n = 40), an 80/20
split would not have yielded a sufficiently large test set (n = 8). Pathway enrichment
analysis was performed to identify associated metabolic pathways using MetaboAnalyst
6.0 available online: http://www.metaboanalyst.ca (accessed on 6 March 2024). This
metabolite set enrichment analysis (MSEA) utilized the SMPDB library available online:
http://www.smpdb.ca (accessed on 6 March 2024), which consists of 99 metabolite sets
based on normal human metabolic pathways. The globaltest algorithm enabled the MSEA
to use a generalized linear model to calculate a “Q-stat” for all metabolites [16].

http://www.metaboanalyst.ca
http://www.smpdb.ca
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2.4. Data Presentation

All graphical presentations were generated using an R Studio desktop application
(version 4.3.1, RStudio, Boston, MA, USA). The volcano plots were created using the ggplot2
package (version 3.4.0). The metabolic pathway representation graphs were generated by
MetaboAnalyst 6.0.

3. Results
3.1. Demographic and Clinical Characteristics

The demographic and clinical characteristics of NEN patients and healthy controls are
presented in Table 1. NEN cases had an average of 62 years, while controls had an average
age of 57 years, with no significant difference (p = 0.16). However, SCLC (p = 4.73 × 10−2)
and LCNEC (p = 0.03) patients were older than controls. Sex distribution did not differ
significantly between the NEN cases and controls (p = 0.29). Regarding smoking status,
18% of NEN cases were non-smokers, compared to 56% of controls. Due to the higher
prevalence of NSCLCs in clinics, we used a cohort of NSCLC patients as a cancer outgroup
to compare with NENs. The characteristics of patients with NENs were also compared with
those with NSCLC patients, as shown in Table 2. As expected, patients with NSCLCs were
older (65 versus 62 years old) than patients with NENs (p = 6.50 × 10−4). The distribution
of smoking status was also significantly different (p = 1.80 × 10−2), but in both groups,
most cases were ex-smokers (58.3% of NENs; 72.2% of NSCLCs).

Table 1. Characteristics of NEN patients and controls.

Characteristics Cases (n = 120) Controls (n = 71) p-Value

Age (years), mean ± SD 61.9 ± 9.8

56.7 ± 10.7

0.16
Carcinoids (n = 50) 59.3 ± 11.2 0.89

SCLC (n = 40) 63.3 ± 8.1 4.73 × 10−2

LCNEC (n = 30) 64.1 ± 8.9 0.03

Sex (%)
0.29Male 36.7 45.1

Female 63.3 54.9

Smoking status (%)

1.09 × 10−7Current smokers 23.3 8.4
Ex-smokers 58.3 35.2

Non-smokers 18.3 56.3

BMI (kg/m2), mean ± SD 27.8 ± 4.7 26.7 ± 6.0 0.19
BMI, body mass index; SD, standard deviation.

Table 2. Characteristics of NENs patients compared to NSCLC patients.

Characteristics Cases (n = 120) NSCLC (n = 466) p-Value

Age (years), mean ± SD 61.9 ± 9.8

65.2 ± 8.1 6.50 × 10−4Carcinoids (n = 50) 59.3 ± 11.2
SCLC (n = 40) 63.3 ± 8.1

LCNEC (n = 30) 64.1 ± 8.9

Sex (%)
7.70 × 10−2Male 36.7 50.1

Female 63.3 49.9

Smoking status (%)

1.80 × 10−2
Current smokers 23.3 22.8

Ex-smokers 58.3 72.2
Non-smokers 18.3 4.6

Passive 0 0.4

BMI (kg/m2), mean ± SD 27.8 ± 4.7 27.1 ± 5.1 0.24
BMI, body mass index; SD, standard deviation.
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3.2. NENs Have a Distinct Plasmatic Profile

To capture the differences in metabolite concentration between NEN patients and the
control group, we analyzed the plasma concentrations of 153 metabolites (Figure 1). We
found that 15 metabolites displayed a significant reduction in the plasma of NEN patients,
as observed with fumaric acid (p = 5.46 × 10−14) (Figure 1a, Supplementary Table S1).
Conversely, six metabolites, including beta-hydroxybutyric acid (p = 1.02 × 10−5), exhibited
a significant increase in concentration in NEN patients (Figure 1a, Supplementary Table S1).
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Figure 1. Volcano plots with plasma metabolite concentrations. Metabolite selection based on 
Mann–Whitney test and Bonferroni correction (p-value threshold = 0.0003); overexpressed metabo-
lites = red, underexpressed = blue: (a) NENs grouped together, (b) carcinoids tumors, (c) SCLCs or 
(d) LCNECs compared with healthy controls. (e) SCLCs or (f) LCNECs compared to NSCLCs. 

Figure 1. Volcano plots with plasma metabolite concentrations. Metabolite selection based on Mann–
Whitney test and Bonferroni correction (p-value threshold = 0.0003); overexpressed metabolites = red,
underexpressed = blue: (a) NENs grouped together, (b) carcinoids tumors, (c) SCLCs or (d) LCNECs
compared with healthy controls. (e) SCLCs or (f) LCNECs compared to NSCLCs.
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First, our analysis revealed that 18 metabolites differentiated carcinoid tumors from
healthy individuals, with 13 metabolites showing a significant reduction and 5 showing
a significant increase in concentration (Figure 1b, Supplementary Table S2). Second, we
identified four metabolites with reduced concentrations and one with an increased concen-
tration associated with SCLCs (Figure 1c, Supplementary Table S3). Lastly, eight metabolites
showed decreased plasma concentrations and two showed increased concentrations in
LCNEC patients (Figure 1d, Supplementary Table S4).

To gain a deeper understanding of the metabolic distinctions within the spectrum of
lung cancers, we conducted a comparative analysis between SCLCs and LCNECs against
NSCLCs, which encompass both adenocarcinomas and squamous cell carcinomas. When
we compared SCLCs to NSCLCs, we found significant alterations in the plasma con-
centrations of four metabolites (Figure 1e, Supplementary Table S5). Among these, two
were increased while two were decreased. For LCNECs, we observed that only two
metabolites had decreased plasma concentrations compared to NSCLC patients (Figure 1f,
Supplementary Table S6).

Further dissecting the NEN cohort, we identified 23 metabolites with altered plasma
concentrations (p < 0.0003) in one or more NEN subtypes (carcinoid tumors, SCLC, and
LCNEC) compared to healthy controls (Figure 2). Using a Venn diagram, fumaric acid and
LysoPC lipid C16:0 appeared significantly in all three subtypes, while four metabolites were
shared between carcinoid tumors and LCNECs, and two metabolites were common between
carcinoid tumors and SCLCs (Figure 2a). Unsupervised clustering analysis revealed the
segregation of healthy individuals from NEN patients, with substructuring among the NEN
subtypes that was independent of clinicopathological information (Figure 2b). Specifically,
we identified upregulated glucose (in carcinoid tumors), N-acetylputrescine (in SCLC), and
spermine (in LCNEC) as metabolites uniquely associated with specific NEN subtypes.

3.3. Pathway Analysis

To understand how changes in plasma metabolite composition affect patients, we
focused on identifying which metabolic pathways were impacted. Among the lipids dis-
tinguishing NEN patients from healthy individuals, fatty acid biosynthesis (SMP0000456)
and beta-oxidation (SMP0000051) were impacted by the presence of each of these cancers.
Therefore, we performed an enrichment analysis on the remaining metabolites (non-lipids)
(Figure 3, Supplementary Tables S7–S10). A total of 21 metabolic pathways were enriched
in the presence of NENs (Figure 3a); among these, only the Warburg effect pathway, the
transfer of acetyl groups into mitochondria, and the citric acid cycle were found to be signif-
icant (p < 0.05) (Supplementary Table S11). In each of the NEN subtypes, different metabolic
pathways were significantly impacted. The Warburg effect pathway (p = 5.19 × 10−3), the
transfer of acetyl groups into mitochondria (p = 9.05 × 10−3), phenylalanine/tyrosine
metabolism (p = 0.01), and the citric acid cycle (p = 0.02) were significantly enriched in the
presence of carcinoid tumors (Figure 3b, Supplementary Table S12). Among the significantly
enriched pathways in SCLC, purine metabolism (p = 0.01) was specific to this subtype
(Figure 3c, Supplementary Table S13). In patients with LCNECs, nine metabolic pathways
were significantly impacted, six of which were not found in other NENs, including the urea
cycle (Figure 3d, Supplementary Table S14).
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Figure 2. Representation of variations in concentrations of metabolites differentially expressed in
plasma under different conditions and characterization of their discriminative capacity: (a) Venn
diagram of the 23 metabolites that have significantly different concentrations between patients with
carcinoid tumors, SCLCs, and LCNECs compared to healthy individuals. (b) Heatmap plot with
plasma concentrations of these 23 metabolites. Concentrations were normalized by z-score. Clinical
characteristics are integrated: gender, BMI, smoking, and pathological stage.



Cancers 2024, 16, 3179 10 of 18Cancers 2024, 16, x FOR PEER REVIEW 11 of 19 
 

 

 

(a) 

 

(b) 

Figure 3. Cont.



Cancers 2024, 16, 3179 11 of 18
Cancers 2024, 16, x FOR PEER REVIEW 12 of 19 
 

 

 

(c) 

 
 

(d) 

Figure 3. Metabolic pathways expected to be affected by the presence of NENs: (a) Enrichment anal-
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compared to healthy people. (b) Enrichment analysis with 8 non-lipid metabolites (among 18) dif-
ferentially expressed in patients with carcinoid tumors compared to healthy people. (c) Enrichment 
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compared to healthy people. (d) Enrichment analysis with 5 non-lipid metabolites (among 10) dif-
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top 25 pathways among the 26 enriched. Set enrichment analysis (MSEA) performed with Metabo-
Analyst 6.0. * indicates significantly enriched metabolic pathways (p < 0.05). 

Figure 3. Metabolic pathways expected to be affected by the presence of NENs: (a) Enrichment
analysis with 9 non-lipid metabolites (among the 21) differentially expressed in patients with NENs
compared to healthy people. (b) Enrichment analysis with 8 non-lipid metabolites (among 18)
differentially expressed in patients with carcinoid tumors compared to healthy people. (c) Enrichment
analysis with 4 non-lipid metabolites (among 5) differentially expressed in patients with SCLCs
compared to healthy people. (d) Enrichment analysis with 5 non-lipid metabolites (among 10)
differentially expressed in patients with LCNECs compared to healthy people. Representation of
the top 25 pathways among the 26 enriched. Set enrichment analysis (MSEA) performed with
MetaboAnalyst 6.0. * indicates significantly enriched metabolic pathways (p < 0.05).



Cancers 2024, 16, 3179 12 of 18

3.4. Plasma Metabolite Profile Can Predict Cancer Subtypes

Logistic regression models using elastic net regularization were constructed based
on a selection of metabolites whose plasma concentrations were significantly altered
in patients compared to healthy controls. The final model for distinguishing NEN pa-
tients from healthy controls included the following metabolites: 5-hydroxy-indoleacetic
acid, C10:1, C10:2, C5DC, fumaric acid, lysoPC a C16:0, lysoPC a C18:0, lysoPC a C18:2,
N-acetylputrescine, PC aa C40:2, and uric acid. This model achieved an accuracy of
93.15% ± 5.44% during cross validation, with a sensitivity of 95.77% and a specificity of
96.67%. When tested on the entire cohort of NEN patients and healthy controls, it achieved
a classification accuracy of 96.34%, a sensitivity of 96.67%, and a specificity of 95.77%
(Figure 4b). To detect carcinoid tumors, a model was constructed using seven metabolites:
C10, C18:1, C9, citric acid, fumaric acid, glucose, and phenylalanine. The cross-validation
accuracy was 92.60% ± 8.4%, with a sensitivity of 95.78% and a specificity of 94%. When
tested, the model’s accuracy reached 95.04%, with a sensitivity of 94% and a specificity of
95.77% (Figure 4c). For distinguishing SCLC patients from healthy individuals, a model
was constructed using four metabolites: fumaric acid, lysoPC a C16:0, N-acetylputrescine,
uric acid, and C5DC. The cross-validation accuracy was 90.08% ± 7.38%, with a sensitivity
of 97.19% and a specificity of 85%. When tested, the model achieved an accuracy of 92.79%,
with a sensitivity of 85% and a specificity of 97.18% (Figure 4d). To identify LCNEC patients,
a model was built using four metabolites: lysoPC a C16:0, fumaric acid, indolepropionic
acid, and C5DC. The cross-validation accuracy was 92.09% ± 7.03%, with a sensitivity of
97.19% and a specificity of 86.67%. When tested on the entire cohort of LCNEC patients
and control groups, the accuracy increased to 94.06%, with a sensitivity of 86.67% and a
specificity of 97.18% (Figure 4e).
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Figure 4. Machine learning with potential plasma metabolite biomarkers: (a) Study design. Plasma
samples from a total of 657 participants were analyzed by mass spectrometry. Statistical tests using
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the concentrations of 153 metabolites for each sample were carried out to try and discriminate a par-
ticular profile of NENs. First, a selection step based on a Bonferroni-corrected Mann–Whitney
test with a bootstrap method identified metabolites differentially expressed in NENs. Finally,
among these metabolites, those with predictive potential were used to build logistic regression
models. (b–e) Confusion matrices for all logistic regression models constructed. Test population
= entire cohort. (b) Prediction of NEN patients and healthy controls using concentrations of the
11 metabolites used in the model. Cross-validation accuracy (95% CI) = 93.16% (87.69%–98.62%);
Sensitivity = 95.77%; Specificity = 96.67%. (c) Prediction of carcinoid tumor patients and healthy
controls using concentrations of the 7 metabolites used in the model. Cross-validation accuracy
(95% CI) = 92.60% (84.20%–100%); Sensitivity = 95.78%; Specificity = 94%. (d) Prediction of pa-
tients with SCLCs and healthy controls using concentrations of the 4 metabolites used in the model.
Cross-validation accuracy (95% CI) = 90.08% (82.70%–97.46%); Sensitivity = 97.19%; Specificity = 85%.
(e) Prediction of LCNEC patients and healthy controls using concentrations of the 4 metabolites
used in the model. Cross-validation accuracy = 92.09% (85.06%–99.13%); Sensitivity = 97.19%;
Specificity = 86.67%.

4. Discussion

Our study reveals distinct plasmatic metabolic compositions in patients with pul-
monary NENs, representing the largest NEN cohort to date. We analyzed 153 general
metabolites involved in common cell energy processes, identifying 23 metabolites linked to
the presence of NENs. Notably, we found that NEN subtypes displayed distinct plasma
metabolic profiles, allowing for the accurate classification (>90%) of NEN subtypes using a
machine learning approach.

For the first time, all neuroendocrine tumor subtypes were extensively characterized in
blood using metabolomics. We postulate that the metabolomic profile of NENs reflects the
deregulation of the general metabolisms of healthy human cells. Our findings underscore
the impact of major metabolic pathways in NENs, including lipid metabolism, the tricar-
boxylic acid cycle, and amino acid metabolism. The identification of several metabolites
associated with the Warburg effect suggests that these observations, at least in part, are
attributable to tumor cells.

The perturbation observed in lipid metabolism may stem from a shift in the bal-
ance between the fatty acid biosynthesis pathway and the beta-oxidation pathway, crucial
for meeting cellular energy demands. Cancer cell proliferation heavily relies on lipid
metabolism to fuel energy requirements and facilitate the synthesis of membranes and sig-
naling molecules [17,18]. Lipids have previously demonstrated their potential as biomark-
ers in lung cancer studies [19]. Since its discovery in 1956, the Warburg effect has been
associated with cancer cells, characterized by their preference for aerobic glycolysis over
oxidative phosphorylation for glucose metabolism [20]. Our enrichment analysis indeed
corroborates the presence of this effect across all NEN types (Figure 3b–d).

The involvement of the citric acid cycle in cancer initiation is well documented, owing
to mutations in enzymes within this cycle [21]. This could elucidate the tumorigenesis of
NENs. Among the identified amino acid metabolisms, tryptophan has been implicated in
driving cancer progression [22] and could therefore contribute to the progression of NENs.

Given the heterogeneity of NEN histological subtypes, our findings support the pres-
ence of metabolic signatures specific to carcinoid tumors, SCLCs, and LCNECs. We believe
that the tumor metabolism of each histological subtype would differ based on general
dysregulated metabolisms. Individually, metabolites have the potential to explain tumor
behavior and become biomarkers. For example, our results showed hyperglycemia in
patients with carcinoid tumors, a phenomenon also observed in many cancers, including
NSCLC [23]. This hyperglycemia is not a consequence of tumor progression, but rather a
condition favorable to tumorigenesis. The avidity of cancer cells for glucose contributes to
their resistance to apoptosis [24]. In addition, we also observed a significant decrease in
asymmetric dimethylarginine (ADMA), a product of protein methylation. This metabolite
is an inhibitor of nitric oxide synthesis (NOS), and therefore, an inhibitor of angiogene-
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sis [25]. Carcinoid tumors could, therefore, be subject to angiogenesis. This observation
is consistent with the characteristics of prominent vascularization and angiogenesis of
carcinoid tumors [26].

Purine metabolism exhibited enrichment in SCLCs (Figure 3c). A previous investi-
gation pinpointed dysfunction in this metabolic pathway as a potential driver of tumor
progression in ovarian cancer [27]. Hence, it is conceivable that our observed enrichment
signifies a mechanism facilitating the advancement of these SCLCs. We observed a de-
crease in alpha-ketoglutaric acid levels with LCNECs (Figure 1d). This metabolite, also
known as 2-oxoglutarate (2OG), serves as a substrate for 2-oxoglutarate-dependent dioxy-
genase (2OGDD) enzymes involved in cancer metabolism and epigenetics. While some
2OGDDs promote tumor growth and others suppress it, the precise mechanisms remain
unclear [28]. As LCNECs are rapidly growing tumors, it is possible that a decrease in
2OG limits 2OGDD activity, which suppresses tumor growth. Thus, we believe that the
reduction of 2OG in LCNECs might contribute to tumorigenesis. The significant decrease in
2OG levels in LCNECs compared to healthy controls and NSCLCs underscores its potential
as a plasma biomarker. In this study, a decreased plasma concentration of indolepropionic
acid (IPA) was specifically observed in patients with LCNECs. IPA, generated by the
human microbiota, is recognized for its anticancer properties. Previous research by Sàri
et al. demonstrated that IPA has the ability to diminish the proportions of cancer stem
cells and inhibit their proliferation in cellular and animal models [29]. The reduced plasma
concentration of IPA in LCNEC patients suggests a potential limitation of its anticancer
effects, possibly contributing to the pathogenesis of this cancer type. Finally, a notable
increase in spermine levels was observed in LCNECs (Figure 1d). This polyamine has
previously been associated with promoting an immunosuppressive environment within
the tumor microenvironment [30]. We speculate that spermine contributes to establishing
an immunosuppressive tumor environment for LCNECs.

We attempted to detect the smallest differences between SCLCs and LCNECs by
conducting a comparative analysis; however, none of the 153 candidate metabolites could
discriminate between the two subtypes, which may be due to the fact that these two
subtypes share a similar metabolomic profile given their similarity in terms of pathology
and genomic features [31,32]. In addition, NECs also share histological characteristics
with NSCLCs such as adenocarcinomas and squamous cell carcinomas [33,34], with up to
25% of LCNECs and SCLCs harboring an NSCLC component upon resection [1]. Eleven
out of the 70 NECs (16%) included in our study indeed presented with a minor NSCLC
component. Our comparison of the metabolism between NECs and NSCLCs identified only
five metabolites with significantly divergent concentrations. Our findings suggest that the
metabolism of NECs and NSCLCs most likely overlaps. Nonetheless, future investigations
employing a broader array of metabolites could provide further insights to corroborate or
refute this observation.

The use of machine learning with metabolomics for cancer diagnosis is now expanding
rapidly [35]. In our study, regularization regression models were used to classify NEN
subtypes, including carcinoid tumors, SCLCs, LCNECs, and healthy controls, based on
identified metabolites. Although we did not have access to an external validation cohort,
we opted for an experimental design capable of estimating performance parameters by
using cross validation (Figure 4a). This strategy enabled us to consistently assess the
classification accuracy of each patient, even for the smallest cohort (LCNECs, n = 30).
Unsupervised clustering revealed two primary groups: one encompassing healthy individ-
uals and some carcinoid tumors, and the other including the remaining carcinoid tumors,
SCLCs, and LCNECs (Figure 2b). Notably, clinical features did not cluster to reflect tumor
and control categories.

The relationship between metabolites and NENs extends beyond pulmonary NENs,
reflecting a complex interplay of altered metabolic pathways in these tumors. Metabolomics
has emerged as a crucial tool for understanding NENs, as these tumors, like many cancers,
undergo significant metabolic reprogramming to sustain rapid growth and adapt to vari-
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ous environmental conditions. This metabolic reprogramming, as previously discussed,
commonly involves alterations in glucose, amino acid, and lipid metabolism. For example,
metabolomic studies of small intestinal NENs have identified specific metabolite profiles,
such as elevated levels of tryptophan, serotonin, and related metabolites, which correlate
with the hormonal activity of these tumors [36]. In pheochromocytomas, a type of NEN
originating from the adrenal medulla, distinctive patterns of catecholamine metabolism,
including elevated levels of normetanephrine and metanephrine, have proven useful for
diagnosis and monitoring [37]. Furthermore, the development of a class prediction model
utilizing peptides generated by MALDI mass spectrometry imaging has facilitated the dif-
ferentiation of pancreatic ductal adenocarcinoma from pancreatic neuroendocrine tumors,
underscoring the potential of peptide-based metabolomic approaches in tumor classifica-
tion [38]. These advancements highlight the significant role of metabolomics in elucidating
metabolic alterations in NENs and improving diagnostic and monitoring strategies.

Our findings advance our understanding of cancer metabolomics and hold promise
for clinical applications in diagnosis, monitoring, and prognosis. For pulmonary NENs,
measuring specific metabolites would be critical across various stages of patient man-
agement, including diagnosis, subtyping, monitoring treatment response, and detecting
recurrence. Clinicians should tailor these measurements to the specific clinical context,
ensuring that the appropriate biomarkers are assessed to guide diagnosis and treatment.
These metabolites would be particularly valuable for the early diagnosis of NENs, allowing
for timely intervention. Furthermore, regular monitoring during treatment can help assess
therapeutic response and detect early signs of disease progression or recurrence. In the
era of precision oncology, these results underscore the significance of targeting cancer
metabolism, with several anti-metabolite drugs in clinical use, especially those targeting
nucleotide metabolism [39]. Our enrichment analysis (MetaboAnalyst) has demonstrated
its usefulness in deciphering the pathways potentially impacted by the presence of NENs.
Although strict identification would require in vivo or in vitro experiments, the pathways
listed are consistent with what is known of cancer metabolism, such as the Warburg ef-
fect found in each tumor subtype (Figure 3). Finally, the metabolites identified in our
study need to be confirmed in a larger study. A biomarker test should also use several
cohorts, preferably large [40]. Thus, an external validation cohort is required to confirm
these results.

5. Conclusions

Our study revealed distinct metabolic differences in the blood of NEN patients for
the first time. This research contributes to the field of cancer metabolomics, specifically
for NENs, and offers potential benefits for detection, diagnosis, and predictive biomarker
development.

Supplementary Materials: The following supporting information can be downloaded at: https:
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significantly discriminating between carcinoid tumor patients and healthy people; Table S3: Five
metabolites significantly discriminating between SCLC patients and healthy people; Table S4: Ten
metabolites significantly discriminating between LCNEC patients and healthy people; Table S5: Four
metabolites significantly discriminating between SCLC patients and NSCLC patients; Table S6: Two
metabolites significantly discriminating between LCNEC patients and NSCLC patients; Table S7:
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enrichment analysis; Table S8: Eight metabolites significantly discriminating between carcinoid tumor
patients and healthy people used for enrichment analysis; Table S9: Four metabolites significantly
discriminating between SCLC patients and healthy people used for enrichment analysis; Table S10:
Five metabolites significantly discriminating between LCNEC patients and healthy people used for
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patients; Table S12: Metabolic pathways significantly identified after MSEA in carcinoid tumor pa-
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