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Abstract: Background: Lung cancer is the most common cause of cancer-related deaths worldwide.
Early diagnosis is crucial to increase the curability chance of the patients. Low dose CT screening
can reduce lung cancer mortality, but it is associated with several limitations. Metabolomics is
a promising technique for cancer diagnosis due to its ability to provide chemical phenotyping
data. The intent of our study was to explore metabolomic effects and profiles of lung cancer
patients to determine if metabolic perturbations in the SSAT-1/polyamine pathway can distinguish
between healthy participants and lung cancer patients as a diagnostic and treatment monitoring tool.
Patients and Methods: Plasma samples were collected as part of the SSAT1 Amantadine Cancer Study.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and quantify
metabolite concentrations in lung cancer patient and control samples. Standard statistical analyses
were performed to determine whether metabolite concentrations could differentiate between healthy
subjects and lung cancer patients, as well as risk prediction modeling applied to determine whether
metabolic profiles could provide an indication of cancer progression in later stage patients. Results:
A panel consisting of 14 metabolites, which included 6 metabolites in the polyamine pathway, was
identified that correctly discriminated lung cancer patients from controls with an area under the
curve of 0.97 (95% CI: 0.875-1.0). Conclusion: When used in conjunction with the SSAT-1/polyamine
pathway, these metabolites may provide the specificity required for diagnosing lung cancer from
other cancer types and could be used as a diagnostic and treatment monitoring tool.
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1. Introduction

Lung cancer is one of the most common types of cancer worldwide and is the most common
cause of cancer-related death [1–3] in both men and women, accounting for 25% of cancer deaths.
Based on the U.S. Preventive Services Task Force on Screening for Lung Cancer, approximately 90% of
lung cancer patients die from the disease, in part because it is often not diagnosed until an advanced
stage when the chance to receive curative-intent treatments is low. Radiographic screening using new
technology with low exposure to radiations (low-dose computed tomography, LDCT scan) can reduce
the risk of death from lung cancer and increase the possibility to be cured. Currently LCDT is routinely
used for lung cancer screening in high-risk individuals.

Although the NELSON ( The Dutch-Belgian Randomized Lung Cancer Screening Trial (Dutch
acronym: NELSON study ) trial has shown that LCDT screening has selectivity of 85% and a specificity
of 99% in comparison with no screening [4], a recent study of the Providence VA Lung Cancer
Screening Program showed that the overall false positive rate was 81% [5]. This very high rate required
cumbersome follow up which included additional imaging or testing to confirm the results. There
is a need for evidence-based biomarkers to support pre- and post-test risk assessment in order to
optimize image-based screening further refining screening selection criteria to limit the costs and
providing a post-test risk assessment capable of informing clinical decision making in the management
of indeterminate pulmonary nodules [6]. Several protein-based, microRNA and DNA-methylation
assays for lung cancer detection have been described in the literature or are under commercial
development [7,8].

It is well understood that cancer cells have a fundamentally different metabolism than
non-cancerous cells and this difference is manifested in the endogenous metabolites they produce [9].
Metabolomics is an emerging multi-disciplinary approach, which combines advanced analytical
chemistry techniques with machine learning and statistical modeling to characterize and quantify
thousands of metabolites found in tissues and biofluids. The use of metabolomic profiling has also
been demonstrated in the differentiation of lung cancer stages as well as discrimination of chronic
obstructive pulmonary disease (COPD) from lung cancer [9–14]. Cancer interception is the active way
of detecting and treating cancer and carcinogenesis at earlier stages [15] and metabolomics has recently
been applied to the discovery of tumor biomarkers for the diagnosis, treatment, and prevention of
different solid tumors, including lung cancer [16]. The goal of metabolomics is to identify markers that
can help distinguish between lung cancer and healthy patients, various lung cancer types and stages,
and also aid in tumor detection [6,16]. Similarly, oncoproteomics evaluate protein modification in
malignancy to identify biomarkers that can be used for detection, stratification or prognosis of cancer
and cancer therapies [17].

Previous studies have reported the utility of the enzyme spermidine/spermine
N1-acetyltransferase-1 (SSAT-1) [18] as a cancer detection tool [19–21]. SSAT-1 is a key protein
involved in the synthesis and homeostasis of the polyamines spermine and spermidine [22]. These
polyamines have specific roles in maintaining the membrane potential, controlling intracellular
pH, and cell volume [23]. SSAT-1 is upregulated in breast, kidney, liver, lung and hematological
cancers [19,23–26] as well as in glioblastoma [26–29]. Thus, further examination of metabolites
within the polyamine pathway represents a potential tool for enhanced prediction in the diagnosis of
cancer [21].

Amantadine is a US Food And Drug Administration (FDA)-approved drug for Influenza and
Parkinson’s disease and is a specific substrate for SSAT-1 [30]. We have earlier reported the clinical
utility of amantadine to detect elevated SSAT-1 activity by measuring increased concentrations of
acetylamantadine in the urine of cancer patients [31,32]. Based on the upregulation of SSAT-1 in different
types of cancer, we developed a customized assay to help explore whether (1) the concentrations of
polyamine and other endogenous metabolites comprised of amino acids, biogenic amines, acylcarnitines
and glycerophospholipids in serum of lung cancer patients could be used as a diagnostic test for lung
cancer and (2) evaluate whether combining a panel of these new metabolites can further enhance and
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complement the SSAT1 amantadine assay performance for detection of lung cancers [32]. Here, we
report a metabolic fingerprint determined by a customized liquid chromatography mass spectrometry
(LC-MS) assay that demonstrates the utility of metabolomics for detection of lung cancer.

2. Patients and Methods

2.1. Study Population

This study was undertaken to explore the use of amantadine as a means of measuring increased
SSAT-1 activity. Patients with newly diagnosed and untreated cancer were recruited into the study.
Lung cancer patients were recruited from the National Institute of Cancer Research & Hospital,
Department of Medical Oncology, Mohakhali, Dhaka, Bangladesh. Healthy controls (n = 29) were
recruited from within same geographical location. The subjects used for this study were derived
from a lung cancer patient cohort (n = 80). All participants provided their approval with a signed
informed consent for participation. Volunteers aged between 25 and 75 (median age: 52) years were
included in the study (Figure 1). Exclusion criteria were declared as follows: alcohol consumption
within 5 days of amantadine ingestion, previous adverse reaction to amantadine, currently pregnant or
lactating, and liver or kidney disease. On the day of the study, blood samples were collected from
overnight-fasted participants, prior to ingesting amantadine, and then requested to orally ingest 200 mg
(2 × 100 mg) amantadine capsules (Mylan-Amantadine, amantadine hydrochloride, USP). Blood was
collected 2 hours after amantadine administration. Following blood collection by venipuncture using
sodium-oxalate coated vacutainer tubes, plasma was isolated by centrifugation (1000× g for 15 min)
and plasma aliquoted (500 µL aliquots) and stored at −80 ◦C until analysis.
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The study was approved by the Institutional Review Board of the Ministry of Health & Family
Welfare, the People’s Republic of Bangladesh (No. 115-15882). Clinical studies were completed under
GCP and GLP conditions in accordance with local standards as well as the standards established by
the Canadian Tri-Council Policies.

2.2. Sample Analysis

In the present study, plasma samples 2 hours post-ingestion of 200 mg of amantadine were
analyzed. A high-throughput DI/LC-MS/MS based targeted quantitative assay for plasma samples
has been developed and applied to measure a total of 15 metabolites (The Metabolomics Innovation
Centre, Edmonton, AB, Canada), i.e., valine, putrescine, MTA (5′-Methylthioadenosine), Arginine,
Ornithine, Spermidine, spermine, di-acetyl spermine, methionine, SAMe, N-acetyl Amantadine,
Decadienylcarnitine (C10:2), PC aa C32:2, PC ae C36:0, lysoPC a C18:2 in plasma samples
(Supplementary Materials, Table S3). The samples were analyzed using a kit- Optima™ LC/MS
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grade formic acid and HPLC grade water were purchased from Fisher Scientific (Ottawa, ON,
Canada). L-valine, putrescine, arginine, ornithine, spermidine, spermine, methylthioadenosine,
methionine, ammonium acetate, phenylisothiocyanate (PITC), HPLC grade pyridine, HPLC grade
ethanol and HPLC grade acetonitrile (ACN) were purchased from Sigma-Aldrich (Oakville, ON,
Canada). 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine, 1,2-distearoyl-sn-glycero-3-phosphocholine,
1-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine were purchased from Avanti Polar Lipids,
Inc. (Alabaster, AL, USA). N 1, N 12 -diacetylspermine (hydrochloride) was purchased from Cayman
Chemical (Ann Arbor, Michigan, USA). Decadienylcarnitine was purchased from Medical Isotopes, Inc.
(Pelham, NH, USA). Tableisotope-labelled standards, including d 8 -L-valine, 13 C 4 -1,4- butanediamine,
13 C 6 -arginine, and 5,5-d 2 -L-ornithine were purchased from Cambridge Isotope Laboratories, Inc.
(Tewksbury, MA, USA). d 8 -spemidine, d 8 -spermine, and d 3 -decanoyl-L-carnitine were purchased
from IsoSciences (Ambler, PA, USA). 15 N 5 -adenosine was purchased from Medical Isotopes, Inc.
(Pelham, NH, USA). 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphocholine-N, N, N-trimethyl-d 9 was
purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Multiscreen “solvinert” filter plates
(hydrophobic, PTFE, 0.45 µm, clear, non-sterile) and Nunc™ 96 Deep Well™ plates were purchased
from Sigma-Aldrich (Oakville, ON, Canada) based assay (96-well plate format).

We have applied a targeted quantitative metabolomics approach to analyze the samples using a
combination of direct injection (DI) mass spectrometry with a reverse-phase LC-MS/MS Kit. This kit
in combination with an ABI 4000 Q-Trap (Applied Biosystems/MDS Sciex) mass spectrometer were
used for the targeted identification and quantification of metabolites. The method used combines the
derivatization and extraction of analytes, and the selective mass-spectrometric detection using multiple
reaction monitoring (MRM) pairs. Isotope-labeled internal standards and other internal standards are
used for metabolite quantification. The kit contains a 96 deep-well plate with a filter plate attached
with sealing tape, and reagents and solvents used to prepare the plate assay. First 14 wells in the
Kit were used for one blank, three zero samples, seven standards and three quality control samples
provided with each Kit. Briefly, samples were thawed on ice and were vortexed and centrifuged at
13,000× g. 10 µL of each sample was loaded onto the center of the filter on the upper 96-well kit plate
and dried in a stream of nitrogen. Subsequently, phenyl-isothiocyanate was added for derivatization.
After incubation, the filter spots were dried again using an evaporator. Extraction of the metabolites
was then achieved by adding 300 µL of extraction solvent. The extracts were obtained by centrifugation
into the lower 96-deep well plate, followed by a dilution step with kit MS running solvent. Mass
spectrometric analysis was performed on an API4000 Qtrap® tandem mass spectrometry instrument
(Applied Biosystems/MDS Analytical Technologies, Foster City, Canada) equipped with a solvent
delivery system. The samples were delivered to the mass spectrometer by a LC method followed by a
direct injection (DI) method. Data analysis was done using Analyst 1.6.2.

2.3. Data Analysis

Raw metabolomics data were pre-processed, (1) the metabolites with more than 20% of missing
values in all the groups were removed; (2) when missing values were less than 20%, they were imputed
by half of minimum value for that specific metabolite. Two metabolites, methylthioadenosine (MTA)
and S-adenosyl-L-methionine (SAMe), were removed from the analysis since they did not meet the
quality control test. T-Test [33] has been applied to examine the metabolites varying among normal
and cancerous patients and false discovery rate (fdr) [34] used for dealing with multiple testing error.
Pearson’s correlation coefficient (r) was used to investigate and measure the strength between the
different metabolites in the training and validation datasets. The prediction ability of lung cancer was
measured by each metabolite independently (univariate approach) and in combination (multivariate
approach) using generalized linear regression model. Performance of the model was measured by
area under the curve (AUC, ROC) [35]. The robustness of outcome is evaluated using 10-fold cross
validation. In order to examine if further improvements could be achieved by combining more
variable(s) to the primary model (with just top variable), the following was undertaken: (1) All the
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variables were ranked according to their AUC value (high to low). (2) One by one, each variable added
to the high ranked variable and improvement of AUC was monitored. Different permutations and
combinations were applied to find the best predictor with highest prediction ability. The entire analysis
was performed using R/Bio-conductor. (https://www.r-project.org/).

3. Results

The participant characteristics that include details about number of samples and clinical factors
such as age and cancer subtypes are provided in Supplementary Materials, Table S1. Supplementary
Materials, Table S1A is for first lung cancer cohort group A (training dataset), while Supplementary
Materials, Table S1B is the second cohort group B (validation dataset) which included mostly advanced
stage (3+) lung cancers. Both cohorts A and B were from the n = 80 lung cancer samples. The present
analysis was based on 57 of 80 lung cancer patients. For the baseline, a cohort of healthy volunteers was
chosen from recruited patients of n = 29. Summary of both cancer and healthy cohorts is detailed in
Supplementary Materials, Table S1C. A statistical summary of targeted and measured metabolites along
with number of samples in both training and validation cohort datasets is provided in Supplementary
Materials, Table S2. Targeted metabolites consist of polyamine and other endogenous metabolites
comprised of amino acids, biogenic amines, acylcarnitines and glycerophospholipids as labelled in
Supplementary Materials, Table S2.

3.1. Cluster Analysis and Correlation Matrix

Hierarchical cluster analysis and heatmap of metabolite-metabolite correlation matrix was
conducted and are shown in Figure 2A on training dataset. A popular machine learning tool Partial
Least-Squares Discriminant Analysis (PLS-DA) was used as a classifier to measure the differentiation
between normal and lung cancer patients. PLS-DA is a chemometrics technique that is used to optimize
separation between different groups of samples. There is evidence of good separation as depicted in
Figure 2B,C for both the training and validation cohort vs. the healthy group.
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Figure 2. Cluster Analysis. Hierarchical cluster analysis and heat map of correlation between the
metabolites using training dataset (A); Partial Least-Squares Discriminant Analysis: training dataset (B);
and test dataset (C).

3.2. Univariate Results

Each metabolite was tested independently to establish the prediction ability of outcome (lung
cancer in this case) and then evaluated using training and validation datasets, respectively. Univariate
summary between the datasets is presented in Supplementary Materials, Table S3A. Valine and
lysoPhosphatidylcholine acyl C18:2 (lyso PC a C18.2) were the most significant metabolites with false
discovery rate (fdr) < 0.01 for both the training and validation datasets when t-test analysis were
performed. However, Decadienyl-L-carnitine (C10:2), Phosphatidylcholine diacyl C 32:2 (PC aa C32:2),
Phosphatidylcholine diacyl C 36:0 (PC aa C36:0) and putrescine were significant in training data.
Spermine and Diacetylspermine, which were detected only in validation data and showed significance
at fdr < 0.05. A summary of the t tests for both the training and validation datasets is shown in
Supplementary Materials, Table S3B.

3.3. Multivariate Results

We tested multiple combinations of metabolites using linear regression multivariate modeling
techniques to find the best predictor of lung cancer. Summary of the key metabolites is shown in
Supplementary Materials, Table S3C (training) and Supplementary Materials, S3D (validation). Using
training data maximum AUC ROC achieved was 0.93 (0.84–1.0) with 5 metabolites which included
valine, putrescine, PC.ae.C36.0, PC.aa.C32.2 and C10.2, as shown in Figure 3A. In the validation data,
maximum AUCROC achieved was 0.97 (0.86–1) with three key metabolites valine, spermine and
ornithine (Figure 3B). Based on these results, we found valine as the common predictor of lung cancer
in both univariate and multivariate setting.
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metabolites included valine, putrescine, PC.ae.C36.0, PC.aa.C32.2 and C10.2 (A) and 3 key metabolites
Valine, Spermine and Ornithine (B).
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3.4. Box Plots

Box plots were constructed as a standardized approach to display the distribution concentrations
of the different metabolites between lung cancer and healthy cohorts. In Figure 4, the Box Plots
demonstrates the different metabolite concentration distributions for both training and validation data
for a few selected metabolites.
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4. Discussion

The purpose of this study was to evaluate whether combining a plasma panel of metabolites using
a developed customized assay can further enhance and complement the SSAT-1 amantadine assay
performance for detection of lung cancers. Patients that have tested with high levels of acetylamantadine
can be further tested using this panel to better specify or rule in the type of cancer.

We utilized our finding to (1) identify a set of metabolites using a customized assay that may
discriminate lung cancer from control following post-ingestion of amantadine (T2) and (2) understand
the impact the new metabolites could have on improving the specificity of SSAT-1 amantadine assay.
Analysis of the nature of the metabolites used for the discrimination of lung cancer from controls, as
detailed earlier, reveals a panel of metabolites including valine, lysoPhosphatidylcholine acyl C18:2
(Lyso PC a18:2), decadienyl-L-carnitine (C10:2) phosphatidylcholine, acyl-alkyl C36:0 (PC aa C36:0),
phosphatidylcholine diacyl C30:2 (PC aa C30:2), spermine, and diacetylspermine that can serve to
discriminate between them. Changes in the concentrations of these metabolites are not surprising
because lysophosphatidylcholines are membrane lipids known to be upregulated in lung cancer
patients [36]. In addition, higher concentrations of amino acids are detected during lung tumor
development [37,38]. For example, the high level of valine, leucine, and isoleucine found in lung
tumors are required for energy production through the Krebs cycle [39]. Surprisingly, the metabolite
diacetylspermine used in our study (even though only detected in the validation cohort) to discriminate
patients from controls was found in plasma of patients as an excellent predictor of non-small cell lung
cancer [40].
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SSAT1, a key enzyme in the polyamine pathway (Figure 1), has been shown to be upregulated
in different types of cancers [26,30,41–43]. In recently published studies, acetyltransferase activity of
the enzyme demonstrated that it may be useful as a diagnostic test for lung cancer by monitoring the
conversion of the drug amantadine to its acetylated form [31].

The results obtained from this study are generalizable/projectable, and are based mostly on
lung cancer patients in stages 3+. The study has some limitations. Complete data related to
smoking habits was not adequately collected. Confounding factors such as diet, exposure to natural
arsenic in water, and overall pollution could be contributors to lung disease or cancer. Bangladesh’s
contaminated well water is considered one of the largest public health crises in the world. An estimated
40 million people, approximately 25% of the population, are exposed to drinking water contaminated
with arsenic (≥ 10 µg/L, the maximum levels allowed). The result is that trace arsenic exposure in
Bangladesh appears to have led to dramatic increases in cancers ranging from skin to liver to lung,
in cardiovascular disease, and in developmental and cognitive problems for children. However, the
impact of environmental factors such as arsenic exposure in cancer development is complex, due to
the long latency time before cancer development [44,45].

A separate study in a North American cohort (as well as other geographical regions) is warranted
due to potential genetic and environmental influences. The authors are cognizant of these aspects and
are accordingly in the process of completing a discovery, and a validation retrospective study based on
a North American population using key learning from the present study has been planned by Rolfo et
al. in collaboration with the University of Maryland. A larger retrospective study with emphasis on
early detection, combining critical clinical parameters and pathology assessment reports may yield
new insights and approach in early lung cancer diagnosis. In addition, understanding the metabolic
pathways associated with these newly identified putative biomarkers and their role in lung cancer
is warranted.

5. Conclusions

The present study provides evidence that the customized assay, which was comprised of some
metabolites corresponding to the polyamine pathway and other metabolites, is highly applicable and
feasible. The collective panel amplifies the signal and increases the tissue specificity of the SSAT-1
amantadine assay, which may serve as a promising lung cancer diagnostic tool. The results show a
clear need for a large-cohort study to confirm the findings for real world application.

Clinical Practice Points

• There is an urgent need to identify reliable, sensitive and economical diagnostic test for lung
cancer, which is typically detected late and non-symptomatic where treatment options are limited
and tend to be aggressive.

• Metabolomics is moving to clinical bedside with increased number of approved tests now being
offered for diagnosis, prognosis and surveillance.

• We report in this paper a robust panel of 14 metabolites associated in the SSAT-1/polyamine
pathway along with other endogenous metabolites comprised of amino acids, biogenic amines,
acylcarnitines and glycerophospholipids amines that correctly discriminated between lung cancer
patients from healthy controls using an established and customized assay.

• Detection and measurement of these specific metabolites can be employed to distinguish between
healthy participants and patients with a diagnosis of lung cancer using existing LCMS equipment
and infrastructure.

• This test can complement the SSAT1 Amantadine assay to further increase tissue specificity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/8/1069/s1,
Figure S1: The full range of the Box Plots, Table S1A: First lung cancer cohort group A (training dataset), Table
S1B: First lung cancer cohort group B (validation dataset), Table S1C: Summary table of normal vs Lung cancer,
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Table S2: Statistical summary of samples and metabolite measures, Table S3A: Univariate Summary Measure
of each Metabolite, Table S3B: T-test for key Metabolites using training data (A) and validation data, Table S3C:
Training data, generalized linear regression multivariate model statistics-key metabolites, Table S3D: Validation
data, generalized linear regression multivariate model statistics-key metabolites.

Author Contributions: S.S. analyzed the data and performed entire statistical analysis. P.S.T., D.S.S., and R.A.S.
designed the study. S.S., C.R., and R.A.B. were involved in data analysis, and wrote the first draft of the manuscript
and had primary responsibility for final content. G.H., R.A.B., and A.W.M. were responsible in procuring financial
support for the clinical study. A.W.M., C.R., and A.R. provided medical oversight for the clinical study and
reviewed the paper. C.R. and A.R. were responsible for the final draft and the scientific background of the
manuscript. P.S.A. provided medical oversight for the clinical study at the Bangladesh site. N.K., P.R. and R.A.S.
were responsible for regulatory approvals and study implementation at the Bangladesh site. B.R. and P.S.T.
provided the expertise for regulatory and institutional review board approvals. P.S.T. was also responsible for the
management of the samples. All authors approved the manuscript.

Funding: This study was supported by BioMark Diagnostics, Inc. RA Bux is the president and CEO of BioMark
Diagnostics, Inc. and Guoyu Huang was the project director (Richmond, BC, Canada), which sponsored this study.
Partial funding was also provided by Maunders McNeil Foundation.

Acknowledgments: We thank the funding agencies NSERC and Maunders McNeil Foundation, and the Bangladesh
National Cancer Centre for samples. Infrastructural support was provided by the St. Boniface Hospital Foundation
and the University of Manitoba. We also thank The Metabolomics Innovation Centre (Edmonton, AL, Canada) for
the development of the LC/MS/MS assay for detection of the metabolites.

Conflicts of Interest: RA Bux and Guoyu Huang are shareholders of BioMark Diagnostics Inc. PS Tappia and
DS Sitar are minor shareholders of BioMark Diagnostics, Inc. Dr. Rolfo reports personal fees from Novartis,
personal fees from MSD, non-financial support from OncoDNA, personal fees and non-financial support from
GuardantHealth, outside the submitted work. The authors have no other relevant affiliations or financial
involvement with any organization or entity with a financial interest or financial conflict with the subject matter or
materials discussed in the manuscript apart from those disclosed.

References

1. PDQ Adult Treatment Editorial Board. Non-small cell lung cancer treatment (PDQ®): Health professional
version. In PDQ Cancer Information Summaries; National Cancer Institute (US), Bethesda: Rockville, MD,
USA, 2002. Available online: http://www.ncbi.nlm.nih.gov/books/NBK65865/ (accessed on 27 July 2019).

2. Jemal, A.; Ward, E.M.; Johnson, C.J.; Cronin, K.A.; Ma, J.; Ryerson, A.B.; Mariotto, A.; Lake, A.J.; Wilson, R.;
Sherman, R.L.; et al. Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival.
J. Natl. Cancer Inst. 2017, 109, 8. [CrossRef]

3. Corrales, L.; Nogueira, A.; Passiglia, F.; Listi, A.; Caglevic, C.; Giallombardo, M.; Raez, L.; Santos, E.; Rolfo, C.
Second-Line Treatment of Non-Small Cell Lung Cancer: Clinical, Pathological, and Molecular Aspects of
Nintedanib. Front. Med. 2017, 4, 13. [CrossRef] [PubMed]

4. Horeweg, N.; Scholten, E.T.; de Jong, P.A.; van der Aalst, C.M.; Weenink, C.; Lammers, J.W.; Nackaerts, K.;
Vliegenthart, R.; ten Haaf, K.; Yousaf-Khan, U.A.; et al. Detection of lung cancer through low-dose CT
screening (NELSON): A prespecified analysis of screening test performance and interval cancers. Lancet Oncol.
2014, 15, 1342–1350. [CrossRef]

5. Gartman, E.J.; Jankowich, M.D.; Baptiste, J.; Nici, L. Providence VA lung cancer screening program:
Performance: Comparison of Local False Positive and Invasive Procedure Rates to Published Trial Data,
A98. Clinical Strategies to Improve Lung Cancer Early Detection: Who is at Risk Here. In American Journal
of Respiratory and Critical Care Medicine, Proceedings of the American Thoracic Society International Conference
Abstracts, San-Diego, CA, USA, 18–23 May 2018; American Thoracic Society: New York, NY, USA; Volume
197, p. A2477.

6. Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P.;
et al. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J. Thorac. Oncol. 2019,
14, 343–357. [CrossRef] [PubMed]

7. Mamdani, H.; Ahmed, S.; Armstrong, S.; Mok, T.; Jalal, S.I. Blood-based tumor biomarkers in lung cancer for
detection and treatment. Transl. Lung Cancer Res. 2017, 6, 648–660. [CrossRef] [PubMed]

8. Leygo, C.; Williams, M.; Jin, H.C.; Chan, M.W.Y.; Chu, W.K.; Grusch, M.; Cheng, Y.Y. DNA Methylation as a
Noninvasive Epigenetic Biomarker for the Detection of Cancer. Dise. Markers 2017, 2017, 3726595. [CrossRef]
[PubMed]

http://www.ncbi.nlm.nih.gov/books/NBK65865/
http://dx.doi.org/10.1093/jnci/djx030
http://dx.doi.org/10.3389/fmed.2017.00013
http://www.ncbi.nlm.nih.gov/pubmed/28293555
http://dx.doi.org/10.1016/S1470-2045(14)70387-0
http://dx.doi.org/10.1016/j.jtho.2018.11.023
http://www.ncbi.nlm.nih.gov/pubmed/30529598
http://dx.doi.org/10.21037/tlcr.2017.09.03
http://www.ncbi.nlm.nih.gov/pubmed/29218268
http://dx.doi.org/10.1155/2017/3726595
http://www.ncbi.nlm.nih.gov/pubmed/29038612


Cancers 2019, 11, 1069 10 of 11

9. Wishart, S.D.; Mandal, R.; Stanislaus, A.; Ramirez-Gaona, M. Cancer Metabolomics and the Human
Metabolome Database. Metabolites 2016, 6, 10. [CrossRef] [PubMed]

10. Jordan, K.W.; Adkins, C.B.; Su, L.; Halpern, E.F.; Mark, E.J.; Christiani, D.C.; Cheng, L.L. Comparison of
squamous cell carcinoma and adenocarcinoma of the lung by metabolomic analysis of tissue–serum pairs.
Lung Cancer 2010, 68, 44–50. [CrossRef]

11. Hori, S.; Nishiumi, S.; Kobayashi, K.; Shinohara, M.; Hatakeyama, Y.; Kotani, Y.; Hatano, N.; Maniwa, Y.;
Nishio, W.; Bamba, T.; et al. A metabolomic approach to lung cancer. Lung Cancer 2011, 74, 284–292.
[CrossRef]

12. Mathé, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.;
Smith, P.B.; Anami, K.; et al. Noninvasive Urinary Metabolomic Profiling Identifies Diagnostic and Prognostic
Markers in Lung Cancer. Cancer Res. 2014, 74, 3259. [CrossRef]

13. Miyamoto, S.; Taylor, L.S.; Barupal, K.D.; Taguchi, A.; Wohlgemuth, G.; Wikoff, R.W.; Yoneda, Y.K.;
Gandara, R.D.; Hanash, M.S.; Kim, K.; et al. Systemic Metabolomic Changes in Blood Samples of Lung
Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry. Metabolites 2015, 5,
192–210. [CrossRef] [PubMed]

14. Yokota, H.; Guo, J.; Matoba, M.; Higashi, K.; Tonami, H.; Nagao, Y. Lactate, choline, and creatine levels
measured by vitro 1H-MRS as prognostic parameters in patients with non-small-cell lung cancer. J. Magn.
Reson. Imaging 2007, 25, 992–999. [CrossRef] [PubMed]

15. Blackburn, E.H. Cancer Interception. Cancer Prev. Res. (Phila) 2011, 4, 787. [CrossRef] [PubMed]
16. Tang, Y.; Li, Z.; Lazar, L.; Fang, Z.; Tang, C.; Zhao, J. Metabolomics workflow for lung cancer: Discovery of

biomarkers. Clin. Chim. Acta 2019, 495, 436–445. [CrossRef] [PubMed]
17. Maes, E.; Mertens, I.; Valkenborg, D.; Pauwels, P.; Rolfo, C.; Baggerman, G. Proteomics in cancer research:

Are we ready for clinical practice? Crit. Rev. Oncol. Hematol. 2015, 96, 437–448. [CrossRef] [PubMed]
18. Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [CrossRef]
19. Babbar, N.; Hacker, A.; Huang, Y.; Casero, R.A. Tumor Necrosis Factor α Induces Spermidine/Spermine

N1-Acetyltransferase through Nuclear Factor κBin Non-small Cell Lung Cancer Cells. J. Biol. Chem. 2006,
281, 24182–24192. [CrossRef]

20. Gabrielson, E.; Tully, E.; Hacker, A. Induction of spermidine/spermine N1-acetyltransferase in breast cancer
tissues treated with the polyamine analogue N1, N11-diethylnorspermine. Cancer Chemother Pharmacol. 2004,
54, 122–126. [CrossRef]

21. Huang, W.; Eickhoff, J.C.; Mehraein-Ghomi, F.; Church, D.R.; Wilding, G.; Basu, H.S. Expression of
spermidine/spermine N1-acetyl transferase (SSAT) in human prostate tissues is related to prostate cancer
progression and metastasis. Prostate 2015, 75, 1150–1159. [CrossRef]

22. Pegg, A.E. Spermidine/spermine-N1-acetyltransferase: A key metabolic regulator. Am. J. Phy.
Endocrinol. Metab. 2008, 294, E995–E1010. [CrossRef]

23. Kingsnorth, A.N.; Wallace, H.M. Elevation of monoacetylated polyamines in human breast cancers. Eu. J.
Cancer Clin. Oncol. 1985, 21, 1057–1062. [CrossRef]

24. Pine, M.; Huben, R.; Pegg, A. Production of N1-acetyl spermidine by renal cell tumors. J. Urol. 1989, 141,
651–655. [CrossRef]

25. Sessa, A.; Perin, A. Increased synthesis of N1-acetylspermidine in hepatic preneoplastic nodules and
hepatomas. Cancer Lett. 1991, 56, 159–163. [CrossRef]

26. YeA, C.; Bulovskaya, L.N.; Pavlova, M.V.; Krupkin, R.G. Activity of N-acetyltransferase in patients with
malignant lymphomas. Neoplasma 1978, 25, 471–475.

27. Bredel, M.; Bredel, C.; Juric, D.; Harsh, G.R.; Vogel, H.; Recht, L.D.; Sikic, B.I. Functional network analysis
reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
Cancer Res. 2005, 65, 8679–8689. [CrossRef] [PubMed]

28. Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.;
Zhang, W.; et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely
mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006, 9,
391–403. [CrossRef] [PubMed]

29. Sun, L.; Hui, A.M.; Su, Q.; Vortmeyer, A.; Kotliarov, Y.; Pastorino, S.; Passaniti, A.; Menon, J.; Walling, J.;
Bailey, R.; et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.
Cancer Cell 2006, 9, 287–300. [CrossRef]

http://dx.doi.org/10.3390/metabo6010010
http://www.ncbi.nlm.nih.gov/pubmed/26950159
http://dx.doi.org/10.1016/j.lungcan.2009.05.012
http://dx.doi.org/10.1016/j.lungcan.2011.02.008
http://dx.doi.org/10.1158/0008-5472.CAN-14-0109
http://dx.doi.org/10.3390/metabo5020192
http://www.ncbi.nlm.nih.gov/pubmed/25859693
http://dx.doi.org/10.1002/jmri.20902
http://www.ncbi.nlm.nih.gov/pubmed/17410583
http://dx.doi.org/10.1158/1940-6207.CAPR-11-0195
http://www.ncbi.nlm.nih.gov/pubmed/21636545
http://dx.doi.org/10.1016/j.cca.2019.05.012
http://www.ncbi.nlm.nih.gov/pubmed/31103622
http://dx.doi.org/10.1016/j.critrevonc.2015.07.006
http://www.ncbi.nlm.nih.gov/pubmed/26277237
http://dx.doi.org/10.1074/jbc.R116.731661
http://dx.doi.org/10.1074/jbc.M601871200
http://dx.doi.org/10.1007/s00280-004-0786-1
http://dx.doi.org/10.1002/pros.22996
http://dx.doi.org/10.1152/ajpendo.90217.2008
http://dx.doi.org/10.1016/0277-5379(85)90291-3
http://dx.doi.org/10.1016/S0022-5347(17)40925-6
http://dx.doi.org/10.1016/0304-3835(91)90091-U
http://dx.doi.org/10.1158/0008-5472.CAN-05-1204
http://www.ncbi.nlm.nih.gov/pubmed/16204036
http://dx.doi.org/10.1016/j.ccr.2006.03.030
http://www.ncbi.nlm.nih.gov/pubmed/16697959
http://dx.doi.org/10.1016/j.ccr.2006.03.003


Cancers 2019, 11, 1069 11 of 11

30. Bras, A.P.; Hoff, H.R.; Aoki, F.Y.; Sitar, D.S. Amantadine acetylation may be effected by acetyltransferases
other than NAT1 or NAT2. Can. J. Physiol. Pharmacol. 1998, 76, 701–706. [CrossRef] [PubMed]

31. Maksymiuk, A.W.; Sitar, D.S.; Ahmed, R.; Cheng, B.; Bach, H.; Bagchi, R.A.; Aroutiounova, N.; Tappia, P.S.;
Ramjiawan, B. Spermidine/spermine N1-acetyltransferase-1 as a diagnostic biomarker in human cancer.
Future Sci. OA 2018, 4, FSO345. [CrossRef] [PubMed]

32. Maksymiuk, A.W.; Tappia, P.S.; Sitar, D.S.; Akhtar, P.S.; Khatun, N.; Parveen, R.; Ahmed, R.; Ahmed, R.B.;
Cheng, B.; Huang, G.; et al. Use of amantadine as substrate for SSAT-1 activity as a reliable clinical diagnostic
assay for breast and lung cancer. Future Sci. OA 2019, 5, FSO365. [CrossRef]

33. Mankiewicz, R. The Story of Mathematics, Paperback ed.; Princeton University Press: Princeton, NJ, USA,
2004; p. 158. ISBN 978-0691120461.

34. Yoav, B.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple
testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300.

35. Hanley, J.A. Receiver operating characteristic (ROC) methodology: The state of the art. Crit. Rev.
Diagn. Imaging 1989, 29, 307–335. [PubMed]

36. Li, Y.; Song, X.; Zhao, X.; Zou, L.; Xu, G. Serum metabolic profiling study of lung cancer using ultra high
performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Anal.
Technol. Biomed. Life Sci. 2014, 966, 147–153. [CrossRef] [PubMed]

37. Fan, T.W.M.; Lane, A.N.; Higashi, R.M.; Farag, M.A.; Gao, H.; Bousamra, M.; Miller, D.M. Altered regulation
of metabolic pathways in human lung cancer discerned by (13) C stable isotope-resolved metabolomics
(SIRM). Mol. Cancer 2009, 8, 41. [CrossRef] [PubMed]

38. Kami, K.; Fujimori, T.; Sato, H.; Sato, M.; Yamamoto, H.; Ohashi, Y.; Sugiyama, N.; Ishihama, Y.; Onozuka, H.;
Ochiai, A.; et al. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis
time-of-flight mass spectrometry. Metabolomics 2013, 9, 444–453. [CrossRef] [PubMed]

39. Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.;
Tomita, M.; et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by
capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009, 69, 4918–4925. [CrossRef]
[PubMed]

40. Wikoff, W.R.; Hanash, S.; DeFelice, B.; Miyamoto, S.; Barnett, M.; Zhao, Y.; Goodman, G.; Feng, Z.; Gandara, D.;
Fiehn, O.; et al. Diacetylspermine Is a Novel Prediagnostic Serum Biomarker for Non-Small-Cell Lung
Cancer and Has Additive Performance With Pro-Surfactant Protein B. J. Clin. Oncol. 2015, 33, 3880–3886.
[CrossRef] [PubMed]

41. Bras, A.P.; Janne, J.; Porter, C.W.; Sitar, D.S. Spermidine/spermine n(1)-acetyltransferase catalyzes amantadine
acetylation. Drug Metab. Dispos. 2001, 29, 676–680. [PubMed]

42. Battaglia, V.; DeStefano Shields, C.; Murray-Stewart, T.; Casero, R.A.J. Polyamine catabolism in carcinogenesis:
Potential targets for chemotherapy and chemoprevention. Amino Acids 2014, 46, 511–519. [CrossRef]

43. Takenoshita, S.; Matsuzaki, S.; Nakano, G.; Kimura, H.; Hoshi, H.; Shoda, H.; Nakamura, T. Selective
elevation of the N1-acetylspermidine level in human colorectal adenocarcinomas. Cancer Res. 1984, 44,
845–847.

44. Available online: https://undark.org/article/bangladesh-arsenic-poisoning-drinking-water/ (accessed on 27
July 2019).

45. Soza-Ried, C.; Bustamante, E.; Caglevic, C.; Rolfo, C.; Sirera, R.; Marsiglia, H. Oncogenic role of arsenic
exposure in lung cancer: A forgotten risk factor. Crit. Rev. Oncol. Hematol. 2019, 139, 128–133. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1139/y98-086
http://www.ncbi.nlm.nih.gov/pubmed/10030449
http://dx.doi.org/10.4155/fsoa-2018-0077
http://www.ncbi.nlm.nih.gov/pubmed/30450232
http://dx.doi.org/10.4155/fsoa-2018-0106
http://www.ncbi.nlm.nih.gov/pubmed/2667567
http://dx.doi.org/10.1016/j.jchromb.2014.04.047
http://www.ncbi.nlm.nih.gov/pubmed/24856296
http://dx.doi.org/10.1186/1476-4598-8-41
http://www.ncbi.nlm.nih.gov/pubmed/19558692
http://dx.doi.org/10.1007/s11306-012-0452-2
http://www.ncbi.nlm.nih.gov/pubmed/23543897
http://dx.doi.org/10.1158/0008-5472.CAN-08-4806
http://www.ncbi.nlm.nih.gov/pubmed/19458066
http://dx.doi.org/10.1200/JCO.2015.61.7779
http://www.ncbi.nlm.nih.gov/pubmed/26282655
http://www.ncbi.nlm.nih.gov/pubmed/11302933
http://dx.doi.org/10.1007/s00726-013-1529-6
https://undark.org/article/bangladesh-arsenic-poisoning-drinking-water/
http://dx.doi.org/10.1016/j.critrevonc.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30878179
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Patients and Methods 
	Study Population 
	Sample Analysis 
	Data Analysis 

	Results 
	Cluster Analysis and Correlation Matrix 
	Univariate Results 
	Multivariate Results 
	Box Plots 

	Discussion 
	Conclusions 
	References

